54 research outputs found

    Fairness in overloaded parallel queues

    Full text link
    Maximizing throughput for heterogeneous parallel server queues has received quite a bit of attention from the research community and the stability region for such systems is well understood. However, many real-world systems have periods where they are temporarily overloaded. Under such scenarios, the unstable queues often starve limited resources. This work examines what happens during periods of temporary overload. Specifically, we look at how to fairly distribute stress. We explore the dynamics of the queue workloads under the MaxWeight scheduling policy during long periods of stress and discuss how to tune this policy in order to achieve a target fairness ratio across these workloads

    Convexity Properties and Comparative Statics for M/M/S Queues with Balking and Reneging

    Get PDF
    We use sample path arguments to derive convexity properties of an M/M/S queue with impatient customers that balk and renege. First, assuming that the balking probability and reneging rate are increasing and concave in the total number of customers in the system (head-count), we prove that the expected head-count is convex decreasing in the capacity (service rate). Second, with linear reneging and balking, we show that the expected lost sales rate is convex decreasing in the capacity. Finally, we employ a sample-path sub-modularity approach to comparative statics. That is, we employ sample path arguments to show how the optimal capacity changes as we vary the parameters of customer demand and impatience. We find that the optimal capacity increases in the demand rate and decreases with the balking probability, but is not monotone in the reneging rate. This means, surprisingly, that failure to account for customersâ reneging may result in over-investment in capacity. Finally, we show that a seemingly minor change in system structure, customer commitment during service, produces qualitatively different convexity properties and comparative statics.Operations Management Working Papers Serie

    Convexity Properties and Comparative Statics for M/M/S Queues with Balking and Reneging

    Get PDF
    We use sample path arguments to derive convexity properties of an M/M/S queue with impatient customers that balk and renege. First, assuming that the balking probability and reneging rate are increasing and concave in the total number of customers in the system (head-count), we prove that the expected head-count is convex decreasing in the capacity (service rate). Second, with linear reneging and balking, we show that the expected lost sales rate is convex decreasing in the capacity. Finally, we employ a sample-path sub-modularity approach to comparative statics. That is, we employ sample path arguments to show how the optimal capacity changes as we vary the parameters of customer demand and impatience. We find that the optimal capacity increases in the demand rate and decreases with the balking probability, but is not monotone in the reneging rate. This means, surprisingly, that failure to account for customersâ reneging may result in over-investment in capacity. Finally, we show that a seemingly minor change in system structure, customer commitment during service, produces qualitatively different convexity properties and comparative statics.Operations Management Working Papers Serie
    • …
    corecore